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Abstract—The purpose of this thesis is to consider emerging
technologies and their applications towards improved visual
reasoning in order to enhance brain computer interfacing. We
will examine how neural networks model the brain in software,
and how hardware will evolve to support more complex models
by collecting research on mem devices and reservoir computing.
In addition, we will evaluate studies on transcranial focused
ultrasound for its potential as a noninvasive mode of stimulating
the visual cortex.

Index Terms—mem devices, memristor, memcapacitor, tran-
scranially focused ultrasound, artificial neural networks, deep
neural networks, convolutional neural networks, reservoir com-
puting, echo state networks, small world power law, visual cortex,
optical reservoir

I. INTRODUCTION

IT is a foreseeable future where the distance between
the mind and the internet, a vast collection of memory

connecting the world, closes in. We know that the brain is
the source of our experience and reflection, but it is still an
area of research due to the deep complexity of its nature.
Should we be able to decode its connections and map the
sources of various senses, then the distinction between mind
and computer can be reduced. The traditional Von-Neumann
computer is a digital processor that interprets collections of
1s and 0s to develop them into digital outputs so detailed that
they may compare to the analog inputs that we experience, like
images and music [8]. But our minds are more intricate, as we
receive analog information and produce analog outputs. While
it is not immediately apparent how this is superior, consider
facial recognition, a process that, digitally, requires that a
computer be trained on at least hundreds of images, and yet if
you meet someone for just a moment, you could pick them out
from a crowd in an instant. With technical innovation, this limit
of digital processing will be overcome. We will explore how
Non-Von Neumann architectures using mem devices have been
proven to effectively replicate the architecture of the mind.
As well as this, we will dive into how this can be applied
to brain-computer interface technology, to integrate the mind
more closely with the Internet and digital memory.

II. NEURAL NETWORKS

A. Artificial Neural Networks

Artificial Neural Networks (ANNs) are a mathematical rep-
resentation of how brain neurons identify patterns to perform
parallel reasoning from several analog inputs. By representing
this process in software, ANNs have been applied to develop
the field of Artificial Intelligence for a range of technologies.
The brain uses a network of trillions of synapses that connect
neurons, which are electrical nodes [1]. These neurons are
organized into clusters, each performing different functions

Fig. 1: A Deep Neural Network Structure, where layers of
hidden neurons between the input and output neurons are
trained to process information using the backpropagation of
weights in machine learning algorithms. [9]

φ = Activation Function of the Layer
W = Layer Weights Matrix
B = Layer Biases Matrix
I = Input, Y = Output

within the brain. A synapse is reflected in an ANN by a
weight value corresponding to the strength of the connection
between the neurons. The goal is for each neuron to receive
input vectors of information and process the vectors with an
activation function. The output is scaled by the synaptic weight
before its input to the next neuron, until the output neurons
are reached. ANNs successfully achieved machine learning
with the application of training using backpropagation. This
is where the synapse weights are scaled after each forward
pass of information from input to output by a gradient descent
algorithm. The gradient descent algorithm compares the output
values with expected targets and calculates an updated weight.
For the network to successfully learn, there must be multiple
hidden layers between the input and output neurons, each with
their own set of neurons and activation function. With multiple
hidden layers, the network is then regarded as a Deep Neural
Network (DNN).



2

Fig. 2: A Convolutional Neural Network Structure, which uses
kernels convolved with 2D pixel matrices to process visual
data. [1]

B. Training and Datasets

A neural network can only be as good as the data it is
trained on. In order to maximize the effectiveness of training,
the input and target datasets must be optimized to reduce bias.
Datasets like MNIST, CIFAR, and ImageNET were created
to help evaluate models learning from the same information.
By reducing any noise in the data and improving labeling,
the models are less likely to be confused by anomalies [21].
Vision models are also trained by augmenting the data with
filters that change properties of the images so that they are
less consistent, like rotating images, so that the model can
recognize the object pattern at any orientation. Another issue
for neural networks training is managing parameters such as
the learning rate and the number of epochs. If a model trains
for too long, it may begin to overfit the dataset, which leads
to errors where it identifies patterns that exist for only the
training data.

C. Convolutional Neural Networks

ANNs evolved further with the combination of DNNs
and the convolution filter. A convolution is a mathematical
operation that processes a matrix of pixel values representing
an image, with a kernel, a matrix that produces an output
highlighting the necessary features for a computer vision
operation like edge detection or texture mapping [2]. This is
such that an edge detection kernel convolved with an input
picture would result in an output feature map of just the
edges in the picture [22]. The use of this feature map in a
DNN makes it a Convolutional Neural Network (figure 2)
that can spot patterns in the original image, similarly to how
the visual cortex of the brain can. However, now that the
dimension of the input is a matrix and not a vector, the digital
processing required becomes massive because there are so
many operations involved that the information bottlenecks as
data is translated between the RAM and processing units [8].
This is a limitation to the further development of computer
vision technology, and it is why we humans are better at tasks
like facial recognition.

Fig. 3: A Retinotopic Map, showing how information from
visual light enters the eyes to reach the primary visual cortex.
[6]

Fig. 4: A Model Biological Neuron, which exhibits electrical
properties activated by chemical reactions in the brain. [1]

III. THE VISUAL CORTEX

The visual cortex uses an estimated 4-6 billion neurons and
is divided into six critical regions, identified with fMRI, to
process different visual attributes [6]. Lower order areas of
the visual cortex, the primary cortex (V1), V2, and V3, are
precisely mapped to light sources and can be regarded as the
neuron layers closest to the input [6]. The primary cortex
is responsible for detecting edges, orientation, and contrast,
this is much like the feature mapping process at the start
of a CNN. The V1 uses contrast normalization mechanisms
to help regulate brightness, ensuring neurons encode relative
differences rather than absolute brightness, similar to a sig-
moid activation function in ANNs. The V2 region is where
we start to perform pattern recognition, it is the part of the
brain responsible for object detection and classification. Next,
the V3 region is associated with motion and depth, performing
more complex tasks like 3D reconstruction [6]. Both V4 and
V2 specialize in color perception which is used for object
recognition, but fMRI studies reveal that color maps are less
precise than luminance-based maps due to the complexity of
chromatic adaptation in the brain [19]. The regions of the
visual cortex are mapped to the projection of the visual field
on the retina, and changes in eccentricity of visual stimuli
correspond to activity in pathways associated with these visual
field maps. In the primary visual cortex, the image is projected
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by cortical magnification in the retina. This passes more
information from the focal point of the image to the brain
and packs the peripheral vision more densely, so that more
neurons can be used to process the focal area. The visual field
is mapped in every region of the visual cortex allowing for
spatially localized computation. Areas of the visual cortex can
be specialized to certain visual experiences, which we know
from studying certain neurological disorders such as loss of
motion perception or loss of the ability to read words [19].

(a) Retinal Eccentricity, color mapping the visual field

(b) Cortical Magnification, a color mapped projection of the
visual field image on the visual cortex

Fig. 5: Comparison of Retinal Eccentricity and Cortical Mag-
nification, showing the proportion of magnification that the
regions of the visual field undergo when projected to the visual
cortex. [6]

A. Neuron Behavior

Cortical neurons are sensitive to changes in brightness in
order to perform edge detection. This is our natural ability
to grayscale such that our brain applies more significance to
these differences in brightness that CNNs preprocess images
to optimize for [5], [22]. Comparably, the primary visual
cortex uses specialized neurons named double opponent cells
to optimize color perception. These cells are linked to two
receptors that each detect different colors in the visual field.
This makes them especially sensitive to color contrast, so
double opponent cells are necessary for using color in object
classification [4]. When replicating neurons, we also have
to consider that they do not have a digital behavior, but
are analog. When a neuron fires its signal is characterized
by an electrical pulse upon stimulus, which could fail to
surpass the threshold for action potential [5]. For this reason,
a neuron is commonly activated by multiple input activations
simultaneously. As well as this, there is a refractory period
before reaching a resting state, so the neuron has the possi-
bility to change spontaneously without external stimuli. The
neuron’s analog pulse strengthens the synaptic connection in

Fig. 6: A Neural Pulse, which is activated when sufficient
stimulation from input neurons break the threshold voltage,
depolarizing the neuron and passing the information forward
to the next neuron in an analog signal. [5]

what is referred to as the Spike-Time-Dependent-Plasticity,
our biological learning mechanism [5]. This is wherein if a
presynaptic neuron’s spike precedes a postsynaptic neuron’s
spike within a narrow time window, the synapse is typically
strengthened, deemed long-term potentiation. But in contrast,
if the presynaptic spike follows the postsynaptic spike, the
synapse may weaken. This timing-dependent adjustment is
crucial for memory formation, acting as a real time update
to synaptic weight [7].

IV. MEM-DEVICES

As Artificial Intelligence is produced at scale, these neural
networks are limited by their massive demand for hardware
[8]. Although current software models are nearing the number
of neurons in the brain, digital processors are magnitudes less
efficient, requiring over 7 million times as much energy for
data centers that are hectares large [3].

Mem-Devices are nanoscale circuit elements that have the
ability to remember their previous states. This has enormous
application potential for processing neural networks, because
it is similar to the functionality of biological neurons. With
Mem-Devices brain structures can now be duplicated in hard-
ware rather than just in software simulations [9]. They are
modeled as traditional circuit elements, but with a changing
internal state.

A. Memristors

Currently, the memristor is the first of the mem-devices to
have been fabricated. The memristor can be described by two
equations, depending on its application, the flux controlled
model, and the charge controlled model. In both cases, the
resistance of the device is consequently a function of the
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Fig. 7: Current with Respect to Voltage in a Bipolar Threshold
Memristor. The relationship is nonlinear in what is known
as a Hysteresis response caused by the element’s resistance
depending on both input current and previous voltage

previous resistance state, and the voltage across the device.
With this, the memristance value is often calculated using
a window function of the device’s properties to determine
where the momentary resistance lies between its minimum
and maximum [9]. The Hysteresis response shown in figure
7 depicts how the current voltage relationship is nonlinear,
because the resistance is dependent on if the voltage has
increased or decreased from the previous state.

The memristance in a charge-controlled model is given by:

V (t) = M [q(t)] · I(t) (1)

Where the memristance M(q) is defined as:

M(q) =
dϕ(q)

dq
(2)

Here:
• V (t) is the voltage across the memristor,
• I(t) is the current through the memristor,
• q =

∫
I(t) dt is the charge,

• ϕ =
∫
V (t) dt is the magnetic flux linkage.

This charge controlled model is necessary for interpreting
the state of the resistance in the case of a neural network,
because they track how the accumulation of current to the
system changes the state. This state change can be used to
represent the effect of a forward pass on the neuron’s weight.

Memristors have been fabricated with the DC magnetron
sputtering of Hf-Nb thin-film alloys to exhibit the bipolar
threshold switching similar with non-volatile memory behavior
[17]. Magnetron sputtering is already used in CMOS fabrica-
tion lines so it can be easily integrated for the manufacturing of

Fig. 8: Charge with Respect to Voltage in a Bipolar Threshold
Memcapacitor Hysteresis response, where charge to voltage is
not linear like a regular capacitor, because it is reliant on the
mem-device’s previous state. (Charge is modeled in spice as
the voltage at node mem.q)

memristors. Anodic oxidation is then used to form the Hf-Nb
alloy into a uniform oxide layer, allowing for the deposition of
platinum electrodes on top of the memristive material, acting
as individual memristors [17]. This electrochemical method
enables precise control over the oxide layer’s thickness and
composition, which is crucial for tailoring the memristive
behavior of the devices.

B. Memcapacitor

Similarly, mem-capacitors have been shown to exhibit
such a state change with incredible energy efficiency, but
are in earlier stages of development [9]. The state of a
memcapacitor, its memcapacitance, is reliant on the previous
state of the device’s charge, resulting in a nonlinear charge to
voltage ratio, which can be seen in the hysteresis response in
figure 8.

The memcapacitance is given by:

V (t) =
1

C[q(t)]
· q(t) (3)

Where the memcapacitance C(q) is defined as:

C(q) =
dq

dV (q)
(4)

Here:
• V (t) is the voltage across the memcapacitor,
• q(t) is the charge stored in the memcapacitor,
• C(q) is the charge-dependent memcapacitance,
• I(t) = dq

dt is the current through the memcapacitor.
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Fig. 9: A Memcapacitive Crossbar Array, which has been
developed to simulate a feed forward neural network using
memcapacitors in a highly energy efficient hardware replica.
[9]

These equations capture how the accumulation of charge
influences the capacitance state. This state change can be used
to represent dynamic synaptic weights, where the modulation
of charge reflects the adaptive learning behavior of artificial
neurons [7].

The memcapacitor crossbar array developed by Hwang et
al. uses memcapacitor cells consisting of a multilayer stack
for storing electrical charge [?]. This is manufactured in a
process that is similar to CMOS development using tech-
niques, such as oxidation, sputtering, atomic layer deposition,
and ion implantation [?]. By trapping or releasing charge, the
capacitance of each cell can be precisely adjusted, enabling the
memcapacitor array to mimic the spiking synaptic weights of
biological neurons. In order to implement the memcapacitors
into a fully connected circuit network, researchers connect
mem-devices in a crossbar array by combining the cells in
a charge-trap NAND flash (CTF) structure, which places the
mem-devices in series with one another for each respective
neuron, naturally summing the potential difference of their
outputs [9]. While the activation function cannot be simply
applied to this output, as in software, the controlled structure
has been simulated to exhibit the same nature as networks
already used in software today. This network performs only
1.13% less accurately than ideal software comparisons, with
extremely high energy efficiency due to it operating primarily
through dynamic, rather than static power [18].

V. RESERVOIR COMPUTING

Alternatively, mem-devices could be used for reservoir
computing techniques, where the elements are connected in
an unstructured manner. The benefit of reservoir computing
is the significant reduction in training required. DNNs and
RNNs are slowed by the dependency on backpropagation

through time, but with a reservoir this is only necessary at
the inputs and outputs. This would more accurately reflect the
structure of neurons in the brain which are still effectively
learning. Due to their randomly connected nature, reservoirs
are also recursive, meaning that information can continue to
cycle through the network and be retained in the system over
a long period of time, rather than just the previous time step in
what is known as an echo state network [10]. In neuroscience,
neuron structure is modeled as a Small World Power Law
network, where the connection of neurons is described by their
randomness and locality. Locality describes how many connec-
tions a neuron has to neighboring neurons that are considered
close. Randomness is determined by how distinct from a fully
connected network a neuron is, with respect to how many
long distance connections it has to other neurons that are not
simply neighboring. This introduces the concept of clustering,
whereby not only are reservoirs random connections between
neurons, but also somewhat layered as their localization is
only broken by a few random neurons. Such clusters represent
the nature of the visual cortex regions whereby collections of
neurons process information for a specific task, while some
neurons pass on the signals to the next region. This is the
more natural approach to processing the layers of a CNN,
as each time step between layers is now determined by the
probability of the cluster passing the information on, against
continuing to process it [10]. Cluster network topologies are
superior over processing one layer at a time, as it improves
parallelism while also introducing recurrence. In software, the
cluster network variables can be considered hyperparameters
which we can optimize for with machine learning tools like
Ray and Optuna, to perfect the model properties. On top of
clustering reservoirs, to replicate the visual cortex the analog
nature of the neuron has to be simulated and mem-devices can
achieve this by exhibiting the Spike Time Dependent Plasticity
model of a neural pulse (figure 6) in hardware [7]. This is
evidenced by the hysteresis responses shown in figures 7 and
8, where the mem-devices have a threshold dependency and
an adaptive state.

A. Optical Reservoirs

Optical reservoirs are also non Von Neumann architectures
that model echo state networks, but rather than mem-devices
use optical components. An opto-electronic oscillator mod-
ulates a laser input with a time-stepped output to create a
feedback loop. Inputs can be encoded with the laser and,
with the time multiplexing of the feedback loop, can exhibit
properties of a learning neuron. However, neurons in this case
are virtual and only simulated by the system, to be read out
by photodiodes. The advantage of using an optical system is
its higher capacity for speed, and while not as energy efficient
as memcapacitors, it would still be a significant advantage
over digital Turing computation [11]. Because it is operating
at the speed of light, the optical reservoir could have the
speed to replicate as many neurons as are in the brain, but
this would come at the expense of scale, as the necessary
optical equipment is much more large and power consuming
than memcapacitors.
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Fig. 10: A Small World Power Law Cluster Network, a
reservoir computing network simulated in software to most
effectively represent how our biological brains compute, which
could theoretically be developed using memcapacitive devices,
like a crossbar array. [10]

VI. TRANSCRANIAL FOCUSED ULTRASOUND

While mem devices and reservoirs have the potential to de-
velop an artificial visual cortex, there is still a limitation to the
speed at which computers can communicate this information
with us. This is where the emerging field of brain computer
interfacing comes into consideration. The success of electrode
brain computer interfacing has come to be widespread, but
the need for surgical implantation is invasive and impractical
for future commercial applications at scale. Current research
in Transcranial Focused Ultrasound (tFUS) aims to overcome
this. Ultrasound waveforms can be focused to result in varying
cortical activity patterns, using pulsed waves at frequencies
higher than 100Hz, which produce prolonged low frequency
responses [14]. This also provides better spatial resolution
alternative electrical or magnetic stimulation techniques. The
mechanism behind ultrasound neuromodulation is acoustic
radiation force, where mechanical pressure is applied to the
neuron, causing it to activate [12]. Studies found that this
produced negligible thermal increases in the brain and no
cavity or bubbles, meaning that it won’t cause physical damage
to the excited neurons. This shows promising results for non-
invasive visual prosthesis as it can be used to activate the
visual cortex. It was tested on the Rhesus Macaque, primate
relatives to humans, by activating neurons in the frontal eye
field of their frontal cortex [14]. Such activation was shown
to produce consequent neural activity in the V4 of their visual
cortex, showing dependency on the signal sent to the frontal
eye field, and proving an influenced presence of visual stimuli.
Transcranially focused ultrasound was then also investigated
on humans. Participants were monitored to confirm that their
primary visual cortex was activated by the tFUS, and both
fMRI and EEG recordings. Furthermore, they exhibited that
with this activation participants observed visual effects that
aligned with the presence of the tFUS signal and proved it

Fig. 11: Experimental Procedure on Rhesus Macaque, where
transcranial focused ultrasound on the frontal eye field was
proven to induce visual stimulation that matched the responses
from visual stimulation which was produced by a screen. [14]

Fig. 12: An MRI of Human Testing. Transcranial focused
ultrasound was directed at the primary visual cortex and both
EEG and fMRI confirmed neuron activation with negligible
adverse affects. Participants confirmed visual stimulation oc-
curred. [15]

against a placebo control group [15].

VII. POTENTIAL APPLICATIONS

With the combination of these developing technologies,
advancements in the medical industry can flourish and many
viable commercial applications will follow. As mem-devices
are produced at scale, reasoning will massively increase as
processors can perform tasks in the same manner that the
brain does. Furthermore, with the advent of these non Von-
Neumann processors, the visual cortex can be more accurately
reflected in hardware so that the computational advantages of
our biological minds can be harnessed in our devices [8]. One
example might be in cameras where images would no longer
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have to be converted to digital information to be processed.
With this, research can begin to improve visual prosthetics for
the blind that can produce tFUS stimulations that have the
complexity to provide artificial sight [15]. Such technology
could also be repurposed for augmented vision enhancing
what we already see by overlaying digital information into
brain perception regions. This extends beyond the visual cortex
as capabilities improve, where information can be projected
directly to further parts of the brain. In addition, the replaying
of cortical activation patterns could be used for simulating
memories and dreams, either in the brain or on hardware.
Aside from brain computer interfacing, modeling synaptic
connections opens up potential for neuroscientists to improve
our understanding of degenerative brain diseases, and with
artificial neurons the brain can be easily repaired.

VIII. CONCLUSION

Overall, brain activity is in the early stages of being
replicated. Researchers have successfully modeled the neurons
of a fruit fly, but the processing power to achieve this for
trillions of human neurons is lacking [20]. Mem devices
and reservoir computing open up the potential to reconstruct
regions of the brain in hardware not just software. Replicating
the brain can help us map the very source of our thoughts
and consciousness. Already, we have harnessed the virtual
world to extend our memories by storing information on
devices, and accelerated how we share it with the propagation
of signals. Advancements in brain computer interfacing and
analog computation, will enable researchers to synchronize the
processing of information performed digitally and naturally. It
is a near future when the barriers between mind and machine
could be overcome, and with it, the latency of communicating
ideas and the fading of our memories, will reduce.
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